Supervised fuzzy clustering for the identification of fuzzy classifiers
نویسندگان
چکیده
The classical fuzzy classifier consists of rules each one describing one of the classes. In this paper a new fuzzy model structure is proposed where each rule can represent more than one classes with different probabilities. The obtained classifier can be considered as an extension of the quadratic Bayes classifier that utilizes mixture of models for estimating the class conditional densities. A supervised clustering algorithm has been worked out for the identification of this fuzzy model. The relevant input variables of the fuzzy classifier have been selected based on the analysis of the clusters by Fisher’s interclass separability criteria. This new approach is applied to the well-known wine and Wisconsin Breast Cancer classification problems.
منابع مشابه
Supervised Clustering and Fuzzy Decision Tree Induction for the Identification of Compact Classifiers
Fuzzy decision tree induction algorithms require the fuzzy quantization of the input variables. This paper demonstrates that supervised fuzzy clustering combined with similarity-based rule-simplification algorithms is an effective tool to obtain the fuzzy quantization of the input variables, so the synergistic combination of supervised fuzzy clustering and fuzzy decision tree induction can be e...
متن کاملOn the Use of Variable-Size Fuzzy Clustering for Classification
Hard c-means can be used for building classifiers in supervised machine learning. For example, in a n-class problem, c clusters are built for each of the classes. This results into n · c centroids. Then, new examples can be classified according to the nearest centroid. In this work we consider the problem of building classifiers using fuzzy clustering techniques. In particular, we consider the ...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملSemi-supervised Kernel-Based Fuzzy C-Means
This paper presents a semi-supervised kernel-based fuzzy c-means algorithm called S2KFCM by introducing semi-supervised learning technique and the kernel method simultaneously into conventional fuzzy clustering algorithm. Through using labeled and unlabeled data together, S2KFCM can be applied to both clustering and classification tasks. However, only the latter is concerned in this paper. Expe...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 24 شماره
صفحات -
تاریخ انتشار 2003